Robust PCA and MIC statistics of baryons in early minihaloes
نویسندگان
چکیده
منابع مشابه
asymptotic property of order statistics and sample quntile
چکیده: فرض کنید که تابعی از اپسیلون یک مجموع نامتناهی از احتمالات موزون مربوط به مجموع های جزئی براساس یک دنباله از متغیرهای تصادفی مستقل و همتوزیع باشد، و همچنین فرض کنید توابعی مانند g و h وجود دارند که هرگاه امید ریاضی توان دوم x متناهی و امیدریاضی x صفر باشد، در این صورت می توان حد حاصلضرب این توابع را بصورت تابعی از امید ریاضی توان دوم x نوشت. حالت عکس نیز برقرار است. همچنین ما با استفاده...
15 صفحه اولSuppression and spatial variation of early galaxies and minihaloes
We study the effect of the relative velocity of dark matter and baryonic fluids after the epoch of recombination on the evolution of the first bound objects in the early Universe. Recent work has shown that, although the relative motion of the two fluids is formally a secondorder effect in density, it has a dramatic impact on the formation and distribution of the first cosmic structures. Focusi...
متن کاملRobust PCA and Robust Subspace Tracking
Principal Components Analysis (PCA) is one of the most widely used dimension reduction techniques. Given a matrix of clean data, PCA is easily accomplished via singular value decomposition (SVD) on the data matrix. While PCA for relatively clean data is an easy and solved problem, it becomes much harder if the data is corrupted by even a few outliers. The reason is that SVD is sensitive to outl...
متن کاملRandom Consensus Robust PCA
In this section we give the proof of Theorem 1. Recall that Ω is a d×(d−r) matrix, and that ωi ⊂ {1, . . . , d} indexes the r + 1 nonzero entries in the i column of Ω. Each ωi indicates the coordinates of a projection of U that we aim to identify. Since r2pca selects a matrix Ω satisfying (i), Lemma 1 implies that if we find the projections of U onto the coordinates indicated in Ω, then we can ...
متن کاملFast-Robust PCA
Principal Component Analysis (PCA) is a powerful and widely used tool in Computer Vision and is applied, e.g., for dimensionality reduction. But as a drawback, it is not robust to outliers. Hence, if the input data is corrupted, an arbitrarily wrong representation is obtained. To overcome this problem, various methods have been proposed to robustly estimate the PCA coefficients, but these metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monthly Notices of the Royal Astronomical Society
سال: 2014
ISSN: 1365-2966,0035-8711
DOI: 10.1093/mnras/stu274